

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE LA FORMACIÓN PROFESIONAL

19 de junio de 2014

Centro donde se realiza la prueba: IES/CIFP	Localidad del centro:		
DATOS DE LA PERSONA ASPIRANTE			
Apellidos:			
Nombre:	DNI/OTRO:		
PARTE ESPECÍFICA Química			
Puntuación	total		
El/la interesado/a	El/la corrector/a del ejercicio		

INSTRUCCIONES GENERALES PARA EL USO DEL CUADERNILLO DE EXAMEN

- Escriba con letras mayúsculas los datos que se le piden en la portada.
- No escriba en los espacios sombreados.
- Para las respuestas, use los espacios en blanco existentes previstos al efecto.
- Escriba las respuestas con letra clara.
- Si se equivoca, tache el error con una línea: ésta respuesta es un ejemplo.
- Las personas encargadas de la aplicación de la prueba les advertirán del tiempo de finalización de la misma 5 minutos antes del final.
- Dispone de dos horas para la realización de todos los ejercicios de esta parte.

ESTRUCTURA DE LA PRUEBA

La prueba se compone de 5 ejercicios, cada uno con diversos apartados, todos obligatorios.

CRITERIOS GENERALES DE PUNTUACIÓN Y CALIFICACIÓN

- La prueba se valorará de **0 a 10** puntos, con dos decimales, siendo la puntuación máxima de cada ejercicio de 2 puntos.
- Se obtendrá la máxima valoración de los ejercicios y problemas cuando estén adecuadamente planteados y desarrollados, tengan la solución correcta y se expresen los resultados con las unidades correspondientes. En las preguntas teóricas, cuando la respuesta esté debidamente justificada y razonada.
- Se valorará en todo caso: la presentación y legibilidad, el rigor científico, la precisión de los conceptos, la claridad y coherencia de las respuestas, la capacidad de análisis de gráficos y tablas de datos, el uso de esquemas y dibujos y el correcto uso de unidades, símbolos, fórmulas y lenguaje químico.
- En la corrección de ejercicios y problemas se dará más importancia al proceso de resolución y al manejo adecuado de leyes y conceptos que a los cálculos numéricos.
- En los ejercicios y problemas con varios apartados en los que la solución obtenida en uno sea imprescindible para la resolución de otro, cada apartado se valorará independientemente.

MATERIALES PARA LA PRUEBA

Calculadora científica no programable.

EJERCICIO 1 (2 puntos)

En la naturaleza se encuentran 2 isótopos estables del cloro, el ³⁵Cl con una abundancia del 75,77% y el ³⁷Cl, con una abundancia del 24,23%.

1.1. Complete la siguiente tabla sabiendo que el número atómico del CI es 17. Razone la respuesta. (0,5 p)

Isótopo	Protones	Electrones	Neutrones
³⁵ CI			
³⁷ CI			

- 1.2. Calcule el peso atómico del cloro a partir de su abundancia relativa. (0,5 p)
- 1.3. Escriba la configuración electrónica del cloro y razone cuál es el ión más estable que tenderá a formar. (0,4 p)
- 1.4. Razone qué tipo de enlace formará el cloro en las siguientes moléculas: Cl₂, HCl, CaCl₂. (0,6 p)

EJERCICIO 2 (2 puntos)

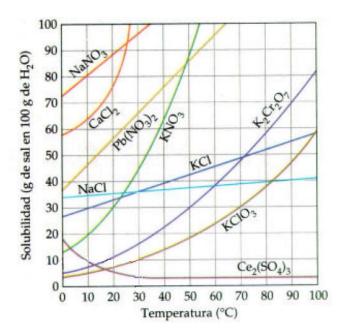
El arrabio (hierro fundido) se obtiene en el horno alto por la reacción: $CO + Fe_2O_3 \rightarrow CO_2$ (g) + Fe

- 2.1. Justifique qué tipo de reacción es y qué función tiene el CO. (0,4p)
- 2.2. Ajuste la reacción por el método del número de oxidación. (0,6p)
- 2.3. A partir de 1Kg de óxido de hierro ¿qué peso de hierro se obtendrá? (0,5p)
- 2.4. A partir de 1Kg del óxido ¿qué volumen de CO_2 medido en condiciones normales se producirá? (0,5p)

Masas atómicas: Fe= 55,8 O = 16 H=1 R = 0.082 atm·L·mol⁻¹ · K⁻¹

EJERCICIO 3 (2 puntos)

- 3.1. Calcule el pH de una disolución 0,05M de HCI. (0,3p)
- 3.2. Calcule la molaridad y el pH de una disolución obtenida al disolver 0,74 g de hidróxido de calcio en un litro de agua. (0,7p)
- 3.3. Complete la fórmula del producto que se forma y ajuste la reacción de neutralización:


$$HCI + Ca(OH)_2 \rightarrow _ + H_2O (0.4p)$$

3.4. Calcule cuál es el reactivo limitante (el que se agotará) cuando reaccionan 300ml de una disolución de HCI de concentración 0,05M con 100 ml de Ca(OH)₂ 0,1M. Indique si el medio resultante es ácido o básico. (0,6 p)

Masas atómicas: Ca =40 O = 16 H=1

EJERCICIO 4 (2 puntos)

- 4.1. Formule la reacción del equilibrio de solubilidad del cromato de plata y escriba la expresión de la constante del producto de solubilidad de esta sal en función de la concentración molar y de su solubilidad molar. (0,6 p)
- 4.2. A partir de la gráfica de las curvas de solubilidad indique razonadamente:
 - 4.2.1. ¿Qué sustancia es más soluble, el nitrato de sodio o el nitrato de potasio? (0,4p)
 - 4.2.2 ¿Qué cantidad de nitrato de potasio se puede disolver en 200 ml de agua a 20°C? (0,5p)
 - 4.2.3. ¿Hasta qué valor se debe aumentar la temperatura para que la solubilidad sea el doble que a 20°C? (0,5p)

EJERCICIO 5 (2 puntos)

5.1. Formule los compuestos de la tabla. (1p)

NOMBRE	FÓRMULA (0,2p/fórmula)
n-pentano	
butanol	
ácido etanoico	
2-metilpropano	
2-hexeno	

5.2. La síntesis de metanol a una temperatura de 300°C responde al siguiente equilibrio:

$$CO(g) + 2H_2(g) \leftrightarrow CH_3OH(g)$$

$$\Delta$$
H= -112,96 KJ (exotérmica)

- 5.2.1. Enuncie el principio de Le Chatelier. (0,2p)
- 5.2.2. Justifique según este principio hacia dónde se desplazará el equilibrio de formación de metanol en los 2 casos siguientes:
 - a) Se aumenta la presión en el recipiente. (0,4p)
 - b) Se aumenta la temperatura en el recipiente. (0,4p)

¡Enhorabuena por haber terminado la prueba!

EDICIÓN: Consejería de Educación, Cultura y Deporte. Dirección General de Formación Profesional, Desarrollo Curricular e Innovación educativa.

IMPRESIÓN: BOPA. D.L.: AS-261-2013.

Copyright: 2013 Consejería de Educación, Cultura y Deporte. Dirección General de Formación Profesional, Desarrollo Curricular e Innovación Educativa. Todos los derechos reservados.

La reproducción de fragmentos de los documentos que se utilizan en las diferentes pruebas de acceso a los ciclos formativos de grado medio y de grado superior de formación profesional correspondientes al año 2013, se acoge a lo establecido en el artículo 32 (citas y reseñas) del Real Decreto Legislativo 1/1996 de 12 de abril, modificado por la Ley 23/2006, de 7 de julio, "Cita e ilustración de la enseñanza", puesto que "se trata de obras de naturaleza escrita, sonora o audiovisual que han sido extraídas de documentos ya divulgados por vía comercial o por Internet, se hace a título de cita, análisis o comentario crítico y se utilizan solamente con fines docentes". Estos materiales tienen fines exclusivamente educativos, se realizan sin ánimo de lucro y se distribuyen gratuitamente a todas las sedes de realización de las pruebas de acceso en el Principado de Asturias.